Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering
نویسندگان
چکیده
BACKGROUND 2,3-Butanediol is a chemical compound of increasing interest due to its wide applications. It can be synthesized via mixed acid fermentation of pathogenic bacteria such as Enterobacter aerogenes and Klebsiella oxytoca. The non-pathogenic Saccharomyces cerevisiae possesses three different 2,3-butanediol biosynthetic pathways, but produces minute amount of 2,3-butanediol. Hence, we attempted to engineer S. cerevisiae strain to enhance 2,3-butanediol production. RESULTS We first identified gene deletion strategy by performing in silico genome-scale metabolic analysis. Based on the best in silico strategy, in which disruption of alcohol dehydrogenase (ADH) pathway is required, we then constructed gene deletion mutant strains and performed batch cultivation of the strains. Deletion of three ADH genes, ADH1, ADH3 and ADH5, increased 2,3-butanediol production by 55-fold under microaerobic condition. However, overproduction of glycerol was observed in this triple deletion strain. Additional rational design to reduce glycerol production by GPD2 deletion altered the carbon fluxes back to ethanol and significantly reduced 2,3-butanediol production. Deletion of ALD6 reduced acetate production in strains lacking major ADH isozymes, but it did not favor 2,3-butanediol production. Finally, we introduced 2,3-butanediol biosynthetic pathway from Bacillus subtilis and E. aerogenes to the engineered strain and successfully increased titer and yield. Highest 2,3-butanediol titer (2.29 . l-1) and yield (0.113 g . g-1) were achieved by Δadh1 Δadh3 Δadh5 strain under anaerobic condition. CONCLUSIONS With the aid of in silico metabolic engineering, we have successfully designed and constructed S. cerevisiae strains with improved 2,3-butanediol production.
منابع مشابه
Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol.
2,3-Butanediol (BDO) is an important chemical with broad industrial applications and can be naturally produced by many bacteria at high levels. However, the pathogenicity of these native producers is a major obstacle for large scale production. Here we report the engineering of an industrially friendly host, Saccharomyces cerevisiae, to produce BDO at high titer and yield. By inactivation of py...
متن کاملExtractive Capacity of Oleyl Alcohol on 2, 3-Butanediol Production in Fermentation Process with Use of Klebsiella pneumoniae PTCC 1290
Recovery of metabolites from fermentation broth by solvent extraction can be used to optimize fermentation processes. End-product reutilization, low product concentration and large volumes of fermentation broth and the requirements for large bioreactors, in addition to the high cost largely contributed to the decline in fermentative 2,3-butanediol production. Extraction can successfully be ...
متن کاملEnhanced production of 2,3-butanediol by engineered Saccharomyces cerevisiae through fine-tuning of pyruvate decarboxylase and NADH oxidase activities
BACKGROUND 2,3-Butanediol (2,3-BD) is a promising compound for various applications in chemical, cosmetic, and agricultural industries. Pyruvate decarboxylase (Pdc)-deficient Saccharomyces cerevisiae is an attractive host strain for producing 2,3-BD because a large amount of pyruvate could be shunted to 2,3-BD production instead of ethanol synthesis. However, 2,3-BD yield, productivity, and tit...
متن کاملA highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae.
Despite recent advances in genome editing capabilities for the model organism Saccharomyces cerevisiae, the chromosomal integration of large biochemical pathways for stable industrial production remains challenging. In this work, we developed a simple platform for high-efficiency, single-step, markerless, multi-copy chromosomal integration of full biochemical pathways in Saccharomyces cerevisia...
متن کاملFumaric Acid Production in Saccharomyces cerevisiae by In Silico Aided Metabolic Engineering
Fumaric acid (FA) is a promising biomass-derived building-block chemical. Bio-based FA production from renewable feedstock is a promising and sustainable alternative to petroleum-based chemical synthesis. Here we report on FA production by direct fermentation using metabolically engineered Saccharomyces cerevisiae with the aid of in silico analysis of a genome-scale metabolic model. First, FUM1...
متن کامل